
18 The Delphi Magazine Issue 35

DBGrid Multi-Selection
by Dave Bolt

The DBGrid control in 32-bit
Delphi has an Options prop-

erty, which contains a list of fea-
tures which may be enabled or
disabled. Amongst these is the
dgMultiSelect option. The help file
says that it can be used to select
multiple non-contiguous rows
using Ctrl+Click or Shift+Arrow
keys, and that the behaviour is
similar to a multi-select listbox. I
haven’t found anything in the help
about how this capability is used.
On looking into the DBGrids unit I
found the SelectedRows property,
which is of type TBookmarkList.
This also does not appear in any of
my Delphi help files.

In this article I will outline the
properties and methods of TBook-
markList and demonstrate how
these can be used to work with the
TDBGrid multi-selection capability
through two projects: one to dem-
onstrate the basic functionality
and the second to demonstrate a
simple strategy for saving and
restoring selection lists.

The TBookmarkList Class
The TBookmarkList class is defined
in the DBGrids unit. It has the acces-
sible properties and methods
shown in Listing 1. I am not includ-
ing anything in the private section
of the class definition since the
only ways to make use of or change
these are through the protected
and public methods and proper-
ties, or by changing the DBGrids
unit itself.

Protected Methods
Note that none of the protected
methods is declared as virtual. I
cannot see any reason you would
wish to override them anyway,
since they are really quite funda-
mental operations with little room
for creativity concerning their
behaviour.

CurrentRow returns a bookmark
for the current row in the dataset
attached to the grid. This is not
necessarily a bookmark in the

protected
function CurrentRow: TBookmarkStr
function Compare(const Item1, Item2: TBookmarkStr): Integer;
procedure LinkActive(Value: Boolean);

public
constructor Create(AGrid: TCustomDBGrid);
destructor Destroy; override;
procedure Clear;
procedure Delete;
function Find(const Item: TBookmarkStr; var Index: Integer): Boolean;
function IndexOf(const Item: TBookmarkStr): Integer;
function Refresh: Boolean;
property Count: Integer
property CurrentRowSelected: Boolean
property Items[Index: Integer]: TBookmarkStr

➤ Listing 1

TBookmarkList’s list (see the dis-
cussion on CurrentRowSelected).

Compare, quite obviously, is used
to test equivalence of two book-
marks. It is called by other, public,
methods like Find.

LinkActive is used to check if
there is an active dataset attached.
If not then any bookmarks or
operations on bookmarks are con-
sidered invalid. It is assumed that if
a dataset is disconnected from the
grid then the bookmarks become
invalid. If you disconnect a grid
from a dataset, then reconnect to
the same dataset, TBookmarkList
assumes it is not the same dataset.
It has no simple way of knowing
that you did actually reconnect to
the same dataset without, for
instance, first closing and re-
opening. I show an application spe-
cific work around for this in the
second project.

Public Methods
The Create method takes a TDBGrid
as its parameter. The TBook-
markList class is strongly tied to
TDBGrid: handing it a TDataSource
could have made it much more
generally useful. Delphi assumes
that a TBookmarkList will be
contained by a particular TDBGrid
component.

The Clear and Delete methods
appear at first sight to do the same
thing, but they don’t! Clear clears
all bookmarks from the list, then
invalidates the associated grid
which causes it to redraw, remov-
ing highlighting from any previ-
ously selected rows. Delete
deletes all bookmarks from the list,
and the associated records from
the dataset.

The Find and IndexOf methods
are also closely linked. IndexOf
takes one parameter, a bookmark,
and returns an index whereby a
value of -1 indicates the bookmark
was not found in the list. Find takes
two parameters, a bookmark and
an index variable. The index
parameter is used to return the
bookmark’s index in the list. The
function returns True if the book-
mark was found in the list, or False
otherwise. IndexOf calls Find,
adding an extra call level, but
saving you writing the extra logic:
see Listing 2.

If you are using the Find func-
tion, the calling application must
check the return value before
attempting to use the index value.
IndexOf would be preferred when
the index is required, Find would
be preferable when you just need
to see if the bookmark is already in

function TBookmarkList.IndexOf(const Item: TBookmarkStr): Integer;
begin
if not Find(Item, Result) then
Result := -1;

end;

➤ Listing 2



July 1998 The Delphi Magazine 19

the list, although it does require a
variable for the second parameter.

The Refresh method is used to
validate the bookmarks currently
in the list. It works through all the
bookmarks checking if they are
valid and deleting any which are
not. On completion it returns True
if orphaned bookmarks were
found. If there were orphans, the
grid is invalidated before
returning.

Properties
The Count property is quite
straightforward, it returns the
number of bookmarks currently in
the list. In normal use the value will
be zero or one. When you click on a
row it will be selected, so Count will
change to one, or increment if
multi-selecting.

The Items property is equally
obvious, it returns the bookmark
at the given index (remember it’s a
zero based list). Count and Items
are both read-only properties.

The CurrentRowSelected prop-
erty is read/write. It can be used to
check if the row at the current

cursor position is already in the list
or not (it uses the Findmethod). By
setting CurrentRowSelected to True,
you cause the current row to be
added to the bookmark list if not
already there.

Using The BookmarkList
So, we have the tools, let’s make
some use of them. I start out with a
simple example using a Paradox
table. The example is on the disk,
but there are a few points to note.

Firstly, I recommend that if you
wish to use MultiSelect you set the
dgRowSelect option to False. If you
don’t do this it may be difficult to
tell if the current line is selected or
not. Try it with the example. You
will of course also have to set
dgMultiSelect to True. Remember

if DBGrid1.SelectedRows.Count>0 then
begin
with DBGrid1.DataSource.DataSet do
for i:=0 to DBGrid1.SelectedRows.Count-1 do
begin
GotoBookmark(pointer(DBGrid1.SelectedRows.Items[i]));
AddToList;

end;
end;

➤ Listing 3: Short form of btnCopySelectClick in BMListU1.Pas

that the selection behaviour is
‘like’, but not ‘the same as’ the
extended selection behaviour in a
listbox component. Clicking on a
cell in the grid selects the row.
Clicking on the same row again
selects it again, but it is already in
the list. Holding down the Ctrl key
and clicking on a cell will toggle the
selection of the row. Once a selec-
tion has been made, the dataset
must not be changed until you
have finished with the selection, or
it will be invalidated. Applying a
range, for instance, can cause a
selection to become invalid.

So to the example. See Other
Database Types below for notes on
Interbase. Select which table you
wish to open, then open it. Try out
the selection facilities in the grid



20 The Delphi Magazine Issue 35

using the mouse. Use the Toggle
Selection button to toggle selec-
tion of the current record. When
you have some rows selected, click
the Copy Selections button and
information from the selected
records will be copied to the list.
When you have some records
selected press the Delete Selec-
tions button and they will be gone
from the table. I included the tables
in a separate ZIP file so you can
restore them.

Of course, you can do what you
want with selected items. I origi-
nally sent information from the
selected records to print. The
workings are simple. A loop works
through the items in the Selected-
Rows property of the grid. At the
same time it moves the cursor in
the dataset to the matching record:
see Listing 3.

Other Database Types
I have included an Interbase ver-
sion of the Paradox table for the
first example so you can see that
the technique works in general.
Remember that Interbase needs to
be set up and the Interbase server
needs to be loaded before you can
use the Interbase data.

The Original Problem
My original problem included a
single grid being used to display
data from several tables by chang-
ing table attachments. Each of the
tables remains active, so strictly
the list of bookmarks should
remain valid, but as soon as a table
is disconnected from a datasource
the grid’s bookmark list becomes
invalid. It would be nice to keep
this list with the table and restore it
when the table is reconnected.
Noticing that the TBookmarkList
implementation requires a data
aware grid, and that it refers back
to the dataset connected to that
grid, it is obvious that we cannot
just create an instance of a TBook-
markList. On the other hand we can
create a list quite readily, and we
have access to the list of book-
marks through the Items and Count
properties. It is a simple matter to
iterate through the existing book-
marks copying them to another list
before swapping datasets. The

trick would seem to be setting the
list back again when the original
dataset is restored.

I have provided this functional-
ity in the second project on the
disk, BMListP2. There are two
TTable components, linked to
simple Paradox tables. The form
contains a single TDBGrid and a
button to toggle between the two
tables. I have also provided selec-
tion buttons as for the previous
example. At the top of the form
there are a group of status indica-
tors. This particular example uses
the simple expedient of moving to
the relevant bookmark in the saved
list and then selecting the row in
the grid in order to restore a book-
mark list to the grid.

Points To Note
Compare the btnCopySelectClick
and RestoreSelectedRows proce-
dures in the first and second proj-
ects respectively. In the first
example project I placed a book-
mark on the current cursor posi-
tion in the data before iterating
through the list of bookmarks, then
repositioned to that record. In the
second project, when a dataset is
reconnected to the grid I do not
bother with these extra steps. The
different strategies are used purely
to illustrate the different behav-
iours. I would normally expect to
use the extra steps.

When a selection is changed in
the grid there does not seem to be

any event to indicate it. This is a
slight problem if you want to do
anything in response to changes in
selection, eg updating the labels I
supply in the second project. This
is one of the places where it would
be nice to be able to override an
appropriate method of the TBook-
markList class, which is unfortu-
nately private. As it is, I take a
simple brute force approach,
check and update on a timer event.

Notes
The ZIP file on the disk for this arti-
cle contains two projects and
another ZIP file containing the data
for the first project. The data for
the first project consists of a Para-
dox table and an Interbase table
based on the ANIMALS.DBF table
from the DEMOS directory, but
without the blob fields.

The second project uses the
COUNTRY.DB and BIOLIFE.DB tables
in the DELPHI DEMOS directories.
The DBDEMOS alias is expected.
This data is not included in the ZIP
files, but is part of the standard
Delphi installation.

Dave Bolt is a self-employed
Analyst/Programmer, currently
working on document storage
and retrieval software for
Varcarme Ltd in Sheffield, UK.


	The TBookmarkList Class
	Protected Methods
	Public Methods
	Properties
	Using The BookmarkList
	Other Database Types
	The Original Problem
	Points To Note
	Notes

